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CHAPTER I

INTRODUCTION

The singularity expansion method (SEM) L] has proven to

be a useful tool for the analysis of electromagnetic scattering

problems. The SEM gives a relation between the incident field

and the induced currents and charges on a body. In this rela-

tion, the natural response is expressed as a sum of complex ex-

ponentials. The SEM parameters in the sum (natural frequencies,

natural modes, and coupling coefficients) together with the in-

cident waveform describe the scattering problem in a useful and

compact way.

A number of investigators have analyzed simple bodies using

SEM. In the original SEM paper, Baum [23 treated a perfectly con-

ducting sphere in free space. le obtained analytical expressions

for surface current density and surface charge density. The SEM

parameters were found numerically from these expressions. Tesche

[33 applied the method of moments to Pocklington's equation and

computed the SEM parameters for a thin wire in free space. Wilton

and Umashankar [4] analyzed an L-shaped wire. Marin [5] derived

approximate expressions for the natural frequencies and natural

modes of several thin-wire structures. Marin and Liu [6] used

some of these results to suggest a simple way of solving tran-

sient thin-wire problems.
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All the work mentioned so far is theoretical in the sense

that the SEM parameters were found by solving equations relating

the incident field and the corresponding body response. For peo-

ple involved in electromagnetic pulse (EMP) testing, it is of in-

terest to know whether the SEM parameters can be computed from

measured test data.

,'an Blaricum and Mittra [7] began work in this area. They

used Prony's method [3j to compute the natural frequencies of

computer-generated transient data. Their results gave impetus to

a number of other studies. Lager, Hudson, and Poggio [9] applied

Prony's method to several test cases and provided some guidelines

for applying the method [1O]. There are some problems involved

in using Prony's method on noisy data [11]. The performance of

the method can be improved by using an iterative technique. Such

a scheme has been applied successfully to actual EMP test data

[121. At this point the problem of how to compute the natural fre-

quencies of a body from transient data appears to be fairly well

understood.

The next line of work involves developing techniques for

computing the other two parameters (natural modes and coupling

coefficients) from real data. Pearson and Robertson [13] showed

that the natural modes for a thin wire can be computed from tran-

sient data. They generated current responses using a thin-wire

computer code. The exciting function was a Gaussian voltage

pulse applied across a gap in the wire. They were able to compute



natural frequencies and natural modes that agree well with those

found by Tesche [3.

The work reported here is a continuation of the efforts

mentioned above. The aim is to develop techniques for estimating

the SEM parameters from real test data. A general approach for

estimating the parameters consists of measuring current waveforms

at a number of different locations on a test body for various an-

gles of incidence and polarization. The parameters are estimated

from these current waveforms. At present, there are not enough

appropriate test data to use in the calculations. As an alterna-

tive, the same thin-wire computer code adopted in several of the

references was used to generate transient current data. The thin

wire is a simple scatterer whose SEM parameters are well known.

It provides a convenient examole for testing the general methods

outlined in tnis report.

Our study produced to major results: The first is that

the SEM parameters, including the natural frequencies, natural

modes, coupling coefficients, and normalization factors can be

calculated numerically from tr3nsient data generated with broad

and narrow excitations. The second result is that by using sig-

nal averaging tecnniques, the SEM parameters can be calculated

from simulated, noisy EMP test data.
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CHAPTER II

FORMULATION

2.1 SEM FOR A THIN-WIRE SCATTERER

Consider a thin-wire scatterer with radius a and length L,

assumed to lie along the z axis. The wire is struck by a plane

electromagnetic wave. The direction of propagation k of the in-

cident field makes an angle a with the normal to the center of the

scatterer as shown in Figure 1. The time origin is taken at the

point where the incident wavefront peak is D meters from the mid-

point of the scatterer. The incident field E is assumed to lie

in the plane of the figure. The induced current on the scatterer

for any 6 and 0 < z < L is represented in [1] as

I(t,-,z) = ZR (a,z) exp(s t)u(t-t 0 ) + g(t,o,z) (1)
a

where to is the turn-on time, the s are the natural frequencies

or poles of the scatterer, the R are the corresponding residues

at s, and g(t,O,z) is the forced response. The summation over

.i represents the natural response of the scatterer. According

to SEM the residues can be factored as

R(6,Z) l)r(6)i (z)f(s) (2)

4
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k

z=O z=L/2 z=L

L meters

Figure 1. Geometry of the thin-wire scatterer
and incident field
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where

max
- the normalization factor

1 - normalized couplina coefficient

i - normalized natural mode

f(s ) - Laplace transform of the exciting function

As a result, the natural response can be expressed in terms

of SEM parameters as

?R( z)ex~ tu~-t) 'max~l.) zt exp(s t)u(t-to

0 0

(3)

Since the values of the induced current are always real, the

poles s shown in Equation I occur in conjugate pairs or lie on the

real axis of the complex s-plane. The poles have negative real

parts and are generally assumed to be simple for a thin-wire scat-

terer. The pole values are uniquely determined by the wire radius

and length.

The natural modes describe the spatial amplitude variation

in the current. They are normalized so that at the maximum magni-

tude points they are real and equal to one. The modes are inde-

pendent of the angle of incidence t but are a function of the

spatial coordinate z and the scatterer radius and length. In [6],

the authors developed an approximate expression for the natural

modes of a thin wire as

(z) = sin(,,z L), 0 - z _ L. 1,2.3 ...... (4)

6
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The coupling coefficients describe how the incident field

couples to a scatterer. They depend on the angle of incidence

and are independent of z. In [6], the coupling coefficients

were approximated as

- a L inc
f(s ),na n 0) sin(aTrz/L)E z  (z,s)dz (5)

0

E inC(zs ) is the Laplace transform of the incident tan-

gential electric field along the scatterer and is given in [3] as

Einc(z,s) = f(s)cos(e) exp(-sz sin(o)/c) (6)

where c is the velocity of light. Hence, Equation 5 becomes

ma~ L
Smaxn (0) = f sin(az/L)cos(0) exp(-s z sin(0)/c)dz (7)

0

For convenience, the coupling coefficients are normalized

so that at the maximum magnitude points they are real and equal

to one. The normalization factor nm ax determines the proper mag-

nitude and phase in Equations 2, 5, and 7.

2.2 THE PROPERTIES OF THE EXCITING WAVEFORMS

In general, the induced currents on the scatterer can be

viewed as the transient response to an incident EMP. Two incident

waveforms with different properties were employed to generate the

data used in this report. They are the Gaussian pulse and the

double exponential pulse.

7



(1) The Gaussian Pulse

The Gaussian pulse can be used to obtain a wide bandwidth

exciting function. It is given by

fl (t) = exp(-t /0i) (S)

where u is a constant. The Laplace transform of fl(t) is given by

f (s) or'tr exp(0s/4) (9)

The Gaussian pulse has a broad frequency spectrum which

resembles that of the delta function, except that the width of

the latter is boundless, whereas that of the Gaussian pulse de-

pends on the spread parameter a. The bandwidth of the pulse in-

creases with decreasing a.

Since the Gaussian pulse cannot be represented by a low

order sum of complex exponentials, care must be taken when ana-

lyzing the wire response with Prony's method L10]. One can wait

until the exciting Gaussian waveform has effectively crossed the

scatterer. Alternately, one can choose o small enough that the

pulse bandwidth is greater than the response bandwidth. In this

case, to a good approximation the natural response of Equation 3

is the scaled impulse response and g(t,o,z) is zero.

(2) The Double Exponential Pulse

The double exponential pulse is given by



f 2 (t) = y(e -at - e-at) t > 0

= 0, otherwise

where 6 and a are the constants which determine the rising and de-

caying rates of the pulse. The field intensity y is assumed to be

unity. The Laplace transform of Equation 10 is

1 If (s) = S - (11)

Since f2(t) is a sum of complex exponentials, Prony's meth-

od can be used for extracting response poles from the source driven

region where the exciting waveform is still present. The poles due

to the exciting pulse simply show up in the list of poles describ-

ing the response.

2.3 METHODS FOR CALCULATING THE SEM PARAMETERS

Two techniques were used to calculate the natural frequen-

cies: Prony's method [7], [9], [13] and the iterative prefilter

method [14]. Prony's method was used to analyze the "noiseless"

response data generated by the thin-wire code. The method fits

a sum of complex exponentials to a given current response. When

the current actually is a sum of complex exponentials, the poles 'I

and residues computed are just those of the given response. Our

experience has been that this method works very well with com-

puter generated signals where the noise is small. With this kind

of data it is easy to recognize the natural frequencies of the

scatterer by simply increasing the number of exponentials fitted.

9



As the order increases, some pole values become approximately con-

stant to several decimal places while others do not. Numerical er-

rors in the computed response data cause some of the fitted pole

values to continue changing. The poles that stabilize as the fit-

ted order increases are the natural frequencies of the thin-wire.

In actual EMP test situations, errors occur in measuring

the response of an object. Any practical scheme for calculating

the SEM parameters must be able to tolerate some error in the data.

There are a number of error sources [15]. One important error

arises when an analog waveform is digitized. For simplicity, we

will neglect other errors and model the digitizing error as a se-

quence of uncorrelated, zero mean, random variables added to sam-

ples of the current. Let the measured samples be given by

y(n) = I(nLt,e,z) + e(n) n = 0,1,2 ...... (12)

where I(nat,e,z) is the wire current at sample nAt and e(n) is the

corresponding error. Prony's method can be used to estimate the

poles of I(nAt,e,z) given y(n). But it is necessary to use a num-

ber of extra poles to account for the noise. We have had better

results using the iterative prefilter method [14]. Briefly, this

technique initializes with Prony's method and then iteratively

filters the data and improves the difference equation coefficient

(and hence the pole) estimates. Our experience is that the pre-

filter technique gives better results than Prony's method when the

data are noisy.

10
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The calculation of the natural modes, couplinq coefficients,

and their- nornalization factors depends on the residues R i,,)

of Equation 2. These residues were calculated in the standard wave

L7] after the poles were calculated by either method above. It is

worth mentioning that for noisy data case the residue estimates

are unbiased if the poles are known exactly L161. So the poles

should be estimated as well as possible before the residues are

calculated.

The data records 1(t, ,:) for all ; and z have the same

poles. So there is a redundancy in the data that can be used to

advantage. Also, since R (a,:) tactors as a product of the nat-

ural mode and coupling coefficient, there is a redundancy in these

parameters as well. Section 3.2 in Chapter III contains a dis-

cussion of how these two types of redundancy can be used to im-

prove SEM parameter estimates. The averaging schemes described

later depend on the assumption that error in the originai data

has zero mean. In a real test situation, systematic errors can

often be noticed and corrected, so this assumption is reasonable.

11I
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CHAPTER III

NUMERICAL RESULTS

3.1 EVALUATION OF SEM PARAMETERS FROM NOISELESS DATA

3.1.1 The Transient Response

Since sufficient experimental data were not available we

simulated data by running the time-domain thin-wire computer code

WT-MBA/LLLlB [17]. The thin-wire scatterer was modeled using six-

ty equally-spaced segments. Two different exciting fields were

used: the Gaussian pulse and the double exponential pulse. The

geometry of the model is depicted in Figure 1. For both cases,

plane wave excitation was assumed; DO is the distance at t = 0

between the peak of the exciting pulse and the midpoint of the

scatterer, and At is the width of each time step. These param-

eters appear in the thin-wire code. The numerical values for the

parameters of the models are:

(1) The Gaussian Pulse Excitation

fl(t) = exp(-t
2/a2)

L = 1 meter

= 2 x O- 0 sec.

a/L = 0.005

-t = 5.556 x 10- sec.

Do = 0.6 meter

These parameter values were used in an example in [7].

12



(2) The Double Exponential Pulse Excitation

f2 (t) = (e
-1t - e- t)u(t)

L = 10 meters
= 4 x lO6

= 2.2 x 1O8

alL = 0.005

t = 5.556 x 10-lO sec.

Do = 6 meters

The transient response referred to was the induced current

at the center of each of the sixty segments and was computed at

500 time-steps of width .t. The SEM expression for the current

is given by

I(t,a,z) = En maxnl()i (z)f(sQ exp(s t)u(t-tO ) + g(t,e,z) (13)

Some of these currents have been plotted in Figures 2 through

5, showing the a dependence. In Figure 6 through 9 the effect of

the variation of z is demonstrated. The time origin for these

graphs was taken when the exciting pulse was Do meters away from

the wire center.

The damped oscillatory behavior of the response can be ob-

served from all of the previously mentioned figures. The responses

to the Gaussian pulse have more high frequency content than the

responses to the double exponential pulse. This is expected from

the properties of the exciting functions. The response to the

Gaussian pulse in each case is roughly the impulse response scaled

13
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Figure 3. Response to (a) Gaussian pulse; (b) double
exponential pulse at =300, z/L = 0.5
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Figure 5. Response to (a) Gaussian pulse; (b) double

exponential pulse at 8 5', z/L = 0.5
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by a constant. This is because the Gaussian pulse has a Fourier

transform that is more or less flat up to the frequency of the

seventh wire pole.

The responses at both ends of the scatterer are very in-

significant. Theoretically, the responses are identically zero

since the responses must satisfy the boundary conditions for the

E-field integral equation of the thin-wire problem [6].

(t, ,O) = I(t,O,L) = 0 (14)

With broadside incidence (e = 0°), the electric field is

parallel to the wire and only symmetric modes are excited. In

this case, the response starts exactly at the same time (=D /c

sec.) for all sixty segments.

Also, as the incident field angle approaches 90 degrees,

the response tends to be weakened. This is because the exciting

wave travels in the direction of z, parallel to the scatterer.

Thus, no resonance will be excited on the scatterer as expected.

3.1.2 The Natural Frequencies and the Corresponding Residues _

When the thin-wire code was run on the CDC 7600 computer,

thirteen decimal precision was requested. Hence, the output data

records can be considered practically noise free. The Prony pro-

gram was used for extracting poles and calculating the residues

successively from the output data.

22



Table 1 shows the natural frequencies obtained by running

the Prony program on the response data with the Gaussian pulse

excitation.

Table I

First Ten Layer One Poles

N SGB I Tesche 2  Prony's Method

1 -0.0828 + jO.9251 -0.082 +I j0.926 -0.0819 + jO.919

2 -0.1212 + jl.9117 -0.120 + ji .897 -0.1210 + i.9

3 -0.1491 + j2.8835 -0.147 + j2.874 -0.1490 + j2.879

4 -0.1713 + j3.8741 -0.169 + j3.854 -0.1717 + j3.866

5 -0.1909 + j4.8536 -0.188 + j4.835 -0.1916 + j4.852

6 -0.2080 + j5.8453 -0.205 + j5.817 -0.2093 + j5.839

7 -0.2240 + j6.8286 -0.220 + j6.800 -0.2256 + j6.821

8 -0.2383 + j7.8212 -0.234 + j7.783 -0.2386 + j7.794

9 -0.2522 + j8.8068 -0.247 + j8.767 -0.2575 + j8.775

10 -0.2648 + j9.8001 -0.260 + j9.752 -0.2951 + j9.735

l [18] by Singaraju, Gini, and Baum

2[3] by Tesche

3with the Gaussian pulse at =600 and z/L =0.5

The results reported by [3] and [18] were also tabulated. When the

first ten poles were compared, our results agreed very well with

the others. These pole values are essentially independent of the

starting time for the analysis and also of the segment number and

23



angle of incidence provided the corresponding modes are excited.

The same kind of results are obtained when the double exponential

pulse is used except of course that two extra poles are present.

It is interesting that Tesche's analysis [3] found two layers of

poles but our approach found poles from only the first layer.

The poles and residues found can be used to approximate the

original waveform. Figure 10 shows the reconstructed responses to

both excitations at 0 degrees incident angle. Nine wire pole

pairs were used. The corresponding transforms are shown sepa-

rately in Figures 11 and 12. In the case of this response to the

double exponential pulse, only two wire pole pairs are actually

needed to provide an accurate reconstruction of the original re-

sponse. Of course, the number of pole pairs needed in the recon-

struction is a function of the frequency content of the original

response. This frequency content depends on the values of the

natural modes, coupling coefficients, and incident field spectrum.

3.1.3 The Natural Modes

For a fixed e = e', Equation 2 can be rewritten as

(x,z) n n(e')i (z)f(s), 0 < z < L (15)

The coupling coefficient term in Equation 15 is merely a

constant now. As z is varied from 0 to L, R (e',z) is simply

proportional to the natural mode current i (z). This proportion-

ality may be removed by normalizing the maximum value of each

mode to unity.
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to Gaussian pulse at a= 0', z/L= 0.5
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Figure 12. Fourier transform magnitude of reconstructed response
to double exponential pulse at a 00 and z/L = 0.5
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The normalized natural modes for the first three resonances

are plotted in Figures 13 through 18. It is observed that the nat-

ural modes are either symmetric or anti-symmetric about the center

of the scatterer. When the field is normally incident on the scat-

terer, only even modes are excited as expected.

These results are virtually identical with those obtained

by Tesche [3] and by Pearson and Robertson [13].

3.1.4 The Coupling Coefficients

As can be seen from Equation 2, the coupling coefficients

contain the :, variation of the residues. For a fixed z we calcu-

lated the residues for several different o, The value of z can

be chosen from the normalized natural mode plot so that the peak

of each mode corresponds to the chosen position of z on the scat-

terer. The normalized variation in these residues gives the I().

The normalized coupling coefficients for the first three

resonances are presented in Figures 19 and 21 for both excitations

with both real and imaginary parts shown. In Figure 20, the imag-

inary part (Gaussian excitation) is shown alone.

It should be noted that we normalized the coupling coef-

ficients so that the maximum magnitude points are real and equal

to one. This is convenient when handling experimental data since

the underlying integral equation is unknown. Tesche normalized

the coupling coefficients differently since he knew the integral

equation. Thus different versions of the plots were obtained.
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for thin wire, a/L = 0.005 (Gaussian pulse
excitation at a = 600)
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Figure 14. Imaginary Darts of first three normalized natural
modes for thin wire, a/L O .005 (Gaussian pulse
excitation at e = 600)
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Figure 17. Real parts of first three normalized natural
modes of thin wire, a/L =0.005 (Gaussian
pulse excitation at 0")
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Figure 20. Imaginary parts of first three modes of normalized
coupling coefficients (Gaussian excitation)
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Figure 21. Normalized coupling coefficients calculated using
double exponential excitation, both real and
imaginary parts of first three modes, are shown
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As can be observed from the graphs, the imaginary parts of the

coupling coefficients are relatively small and this implies that

the coupling coefficients are almost real functions of the inci-

dent angle ). The graphs would be smoother if more values of

1(a) had been computed. Only nineteen values of 8 were used for

each graph in Figures 19, 20 and 21.

3.1.5 The Normalization Factors

Now all the SEM parameters, except the normalization fac-

tors, in Equation 2 are known. This final parameter may be deter-

mined directly from Equation 2 by means of simple complex arith-

metic, i.e.,

max (~ ~s
maxf ,sfor 0 < z < L (16)

The normalization constant contains an arbitrary factor t1

that depends on the choice of the time origin. In all the pre-

ceding graphs, the time origin was chosen so that at t = 0 the in-

cident field peak was D meters from the wire center. 00 is

arbitrary and is chosen for convenience in running the thin-wire

code. However, it is better to elimina.e D from nmax and have
0 a

it depend on the shape of the scatterer. For this reason, we

multiplied the residues R (e,z) by a time shift factor to move

the time origin to the time when the incident pulse peak crosses
s~-tl

the wire center. The required factor is e , where
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t 0 0o/C - ts  (17)

and where ts is the time at which we started to analyze the tran-

sient response. In our calculations, ts was chosen at the 210 th

time step to ensure all the observed responses had started. So

ts = 210 (%t).

The normalization factors for the first three modes of

both excitations are:

1. The Gaussian Excitation

max
nI  -0.7072779xl06 - jO.1938136x10 6  (e=0 0 ,z/L=0.5)

max66
S = 0.1431957 0 - jO.4662369xI06 (e=60 0 ,z/L=0.25)max 064197l

max = 0.3933103xi6 +6 j.1275519xl06
n13 +j.251 0 (3=O°,z/L:O.17)

2. The Double Exponential Excitation

max66
ma x -0.7075146×I0 - jO.1935304x10 6  (e:0 0 ,z/L:0.5)

max = 0.146x06mx =0 - jO.4659009xlO 6  (0=60 0 ,z/L=0.25)

max =4 0251x03 = 0.3911535x106 + jO.1245812xlO6 (e=0 0 ,z/L=0.17)

Since the normalization factor is merely a scaling complex

constant for each pole, it is independent of either e or z. The

results obtained are very close for both excitations.

Tesche [3] normalized the coupling coefficients differently,

therefore his normalization factors are different from what we

computed.
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3.2 THE EFFECTS OF NOISE ON SEM PARAMETER DETERMINATION

3.2.1 The Effect of Noise on the Transient Responses

The simulated EMP data were obtained by adding sequences

from the CDC 6600 random number generator to the data computed by

the thin-wire code. The noise sequence was assumed to be uniformly

distributed with (statistical) mean zero and standard deviation

scaled to one and one half percent of the peak value of each data

record. This is about the level of digitizing noise encountered

in actual testing.

Sample noise corrupted responses (e=O0,z/L=O.5) are pre-

sented in Figure 22 for both excitations. The corresponding Fourier

transform magnitudes are shown in Figures 23 and 24.

Both signals contain the 1.5 percent standard deviation

noise. More signal peaks are visible in the Gaussian response spec-

trum. This is because the wide bandwidth Gaussian pulse puts more

energy into the higher frequency modes than does the double exponen-

tial pulse.

3.2.2 The Effect of Noise on the Natural Frequencies and the

Residues

The direct computation of the poles from noisy transient

data can lead to inaccurate results. Besides, only a limited num-

ber of system poles can be extracted, since the rest have been

severely corrupted ty noise. In principle, each response record
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Figure 23. Fourier transform magnitude of noise corrupted
response to Gaussian pulse at a 00,~ z/L =0.5
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contains the same poles. It is possible to use extra data to en-

hance a particular natural frequency.

The iterative prefilter method rather than Prony's method

was used for all the pole estimates in this section. Suppose data

y(t,e,z) is available at several e and z values. Poles can be com-

puted from each of the records resulting in estimates s (9,z). The

arguments a and z are included to show that the pole estimates de-

pend on location and angle of incidence. Of course the actual wire

poles are independent of a and z. Usually some of the pole esti-

mates cluster, that is, the values lie close together in the s-

plane. An estimate of s can be computed as the average over a

cluster.

s - s (e,z) (18)

where N is the total number of poles in the cluster. We initially

planned on using sa as a final estimate of s . For low order, say

= 1,2, the results are adequate. But the higher order poles had

enough error that we looked for a way to improve the estimate.

The problem with using s as an estimate is that the s (ez) are

biased estimates of s . Averaging tends to remove the random com-

ponent of error but can do nothing about the bias. It would be

better if some of the noise could be averaged out of the original

data records before calculation of the pole estimates. This sug-

gests averaging the data records instead of the s(e,z). The data
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records used in the averaging ought to be those where the s-natural

mode is near a peak. That is, the average should be weighted ap-

proximately in proportion to the natural mode.

As a next step we used the s as poles and computed residue

estimates R (e,z) from the data. For the value of e = e0 that ap-

peared to give the largest range of variation in the magnitude of

(e,z) we computed an estimate of the normalized natural mode

(aoZ). This natural mode is an estimate of which data records

have the best signal to noise ratio for the a-natural frequency

component. The data y(t,e ,Z) corresponding to z values where
0

i (0 ,Z) is approximately :I should be the best data for esti-

mating s . Let

a(t) W (z)Y(t,a0,z) (19)
z

be a weighted average of the data. (D (t) depends on ao but we

will not explicitly show this.) The sum is taken over the avail-

able z values. One choice for the weight function W (z) is to

make it proportional to the estimated natural mode i (eoz).

This proved to be an acceptable choice for low values of since

the corresponding i (e,z) is fairly smooth. But with a : 5, for

example, the natural mode estimate is more erratic. As a result

we used a coarse weight function that was proportional to +1 for

z values that make i (e,0 Z) = 1, equal to -l for z values that

make i (a ,Z) = -l and equal to zero otherwise. Figures 25, 26,

and 27 show graphs of the 4(t) obtained for c= 1, 3, and 5. The
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weight functions W,(z) were chosen to average six, nine, and fif-

teen data records, respectively. The graphs indicate that the

noise level increases as a goes from 1 to 5.

The pole estimate s computed from ¢ (t) should be better

than from an estimate computed from any one of the y(t,6,z). This

is because the noise variance is reduced by the average over z.

Moreover, the pole estimate computed from D (t) should be better

than an estimate computed from averaging the s (o,z). This is be-

cause the s (e,z) contains a bias error while the original data

records y(t,e,z) do not (according to our assumption about the

noise having zero mean).

As an example of the results from using the ; (t) technique

with o = 00, we have

S= -0.0824553 + j0.9183957

3 = -0.1581486 + j2.3/9185

s5 = -0.1893679 + j4.834777

These pole estimates still have some error, of course, but

they are better results than we were able to get by averaging the

s(a,z) values computed from the same data.

Figures 25, 26, and 27 show an interesting fact. The P (t)

contain mostly the a natural frequency. To see why this is the

case, consider neglecting g(t,e,z) and rewriting Equation 3 as

I(toz) = Z,' (t) sin(affz/L), 0 _ z _ L
CL A 12,3 ...... (20)
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where

Smax 1)u

*(t) 2ReFn n (o)f(s) exp(s t)u(t-to) (21)

and where the approximation of Equation 4 is used for the natural

mode. Equation 20 has the form of a Fourier series in z.

The Fourier series coefficients t (t) are given by

L
¢ (t) : f I(t,o,z) sin(aiz/L)dz (22)

0

The function (t) contains time behavior corresponding to

s alone. If the integral in Equation 22 is approximated by a

sum over M values of z spaced Az apart, then we can write

() 2Az iM

- L l(t,e,z.i) sin(azi/L) (23)
il1

where the zi are the z values. This equation compares with Equa-

tion 19. The functions P (t) establish a bound on how well the

various natural frequencies can be separated.

The ~(t) were computed from noisy data and the results are

plotted in Figures 28, 29, and 30 for a 1, 3, and 5. In these

calculations M = 60 and Az = 10/60 meter. The pole values s

estimated from applying the iterative prefilter algorithm toeP(t)

are

sI = -0.08219866 + j0.9187515

S3 = -0.1480808 + j2.877230

s5 = -0.1933258 + j4.847712
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Figure 28. Plot of 4 (t) for =I
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As would be expected, these results are better than those

obtained from the t (t). Unfortunately, the procedure is not

practical since we usually do not know the natural modes. And of

course the modes are not exactly orthogonal. The thin wire is a

special case in that the modes are approximately orthogonal. But

the principle is that the data should be weighed proportionally

to the natural modes.

The technique for calculation of .(t) could be extended by

averaging several o (t) functions computed with different a val-

ues--perhaps weighed by an estimate of the coupling coefficient.

This was not tried.

From the form of Equation 2, it is clear that for some

values of a and z not all the modes are present in I(t,e,z).

This is simply because of zeros in ni(e) and i (z). When the

data are noisy, there is a "dead zone" around the zeros of these

functions where the signal to noise ratio is low, and the natural

frequencies cannot be estimated accurately. For experimental data

we expect that it may be necessary to use a two step measurement

approach. At the first step one places sensors of the test ob-

ject guided by some pretest calculations. After analyzing the

resulting data and estimating the SEM parameters, the second step

is to modify the sensor placement and field orientation to better

identify some modes or to find missing modes.
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3.2.3 The Effect of Noise on the Natural Modes

In order to prevent the occurrence of bias error resulting

from the pole estimation process, the best pole values obtained

should be used to compute the residues for the determination of

the natural modes. If the pole values are accurately known, then

approximately unbiased solutions for residues will be obtained.

The real and imaginary parts of the natural modes calcu-

lated by using the pole values obtained from both p (t) and

a (t) are presented in Figures 31 through 34 for a= 1, 3, and 5.

The graphs indicate that noise is more of a problem with the

higher frequency modes than with the fundamental.

The results obtained can be improved by averaging the nat-

ural modes for the same a, computed from several values of e.

That is, one can compute estimates i (o,z) of i (z) by using res-
a CX

idues calculated from data obtained at different angles of inci-

dence. Then an estimate of the natural mode is obtained as

(z) 1 -- (0,z) (24)

where N is the number of different a values used. This estimate

is unbiased if the residue estimates are unbiased. And of course

averaging reduces the error variance. The average could include

a weight factor proportional to the coupling coefficient but this

was not done.
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Figure 33. Real parts of normalized natural modes
for .~=1,3,5, obtained from (t)
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Figure 34. 1 ma gfnary parts of normalized natural modes
for ci=1,3,5, obtained from ,(t)

59



The averaged natural mode for = 3 is shown in Figures 35

and 36 for real and imaginary parts, respectively. Three uncor-

related noisy third modes were averaged to produce this result.

3.2.4 The Effect of Noise on the Coupling Coefficients

The coupling coefficients were computed by using the poles

obtained from D (t) for the reason given in the previous section.

The real and imaginary parts of the coupling coefficients for

= 1, 2, and 3 are plotted in Figures 37 and 38, respectively.

The coupling coefficient for a = 3 was improved by averaging

three noisy third modes. The average has the form

1 1 ~oz (25)
Nz z

where n (3,z) is the normalized coupling coefficient at location

z, and N, is the number of z values used.

These results are presented in Figure 39, the real part;

and Figure 40, the imaginary part.

3.2.5 The Effect of Noise on the Normalization Factors

The normalization factors can still be determined by Equa-

tion 16 since both the natural modes and coupling coefficients

are now known. However, experience shows that because of resi-

due error, a more accurate value will be achieved by averaging

several Tima x for the same ot, which have been calculated from dif-

ferent values of o and z. Averaging three noisy factors for each
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N=2
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N=3

Figure.37. Real parts of normialized coupling coefficients for
1,2,3, computed from $ d(t)
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Figure 38. Imaginary parts of normalized coupling coefficients
for a =1,2,3, computed from 01(t)
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case, we obtained the normalization factors for the first three

resonant frequencies as

mnx = -0.7148283xlO6

max = 0.1383078,06 - jO.4762430x10
6

max 066

0.4027178lO + j0.1609751×I0n3

Implicit in the n max calculation is the assumption that

f(s ) is known exactly. This assumption is unrealistic for the

higher frequency poles. In EMP testing, information on f(t) is

obtained from field map data. From this data we can expect to

estimate the low frequency behavior of f(s) fairly well but not

the high frequency behavior. So how accurately f(sa) is known

depends on s . For the low frequency poles of a large object,

we expect only minor problems with the f(s) values.
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CHAPTER IV

CONCLUSIONS

The SEM parameters for a thin wire can be evaluated di-

rectly from noiseless transient data using Prony's method. Our

results agree well with Tesche's [3]. With noisy data, the iter-

ative prefilter method gives better results. Averaging tech-

niques can be used to enhance the values of the parameters. We

tested two ways to improve the pole values. The first approach

works simply by averaging several pole values for the same a

which have been computed from the currents at different loca-

tions on the wire and different field orientations. This algo-

rithm gave reasonably good results for the lower frequency poles.

The second approach involves averaging several data records which

have been weighed approximately in proportion to the natural

modes. The poles can be extracted directly from these averages.

This second technique gives more accurate pole values than the

first.

It is interesting to note that only layer one poles [3]

were found. The number of these poles needed to reconstruct the

natural response of a thin-wire scatterer depends on the values

of the natural modes, coupling coefficients, and incident field

spectrum. For some responses, a two pole-pair reconstruction

is adequate; other responses require ten or more pole pairs.
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The best pole values should be used in the determination

of the natural modes and coupling coefficients to minimize the

effect of bias error. Then these parameter estimates can be

improved by signal averaging. The values of the corresponding

normalization factors can be improved by the same process. When

these techniques are applied to an arbitrary test object, it may

be necessary to use a two (or more) step process. At the first

step sensor placement and incident field orientation are chosen

based on pretest calculations and scale model results. After

estimating the SEM parameters from the resulting data, the second

step is to modify the sensor placement and field orientation to

better identify some modes or to find missing modes.

The next phase of our research will be to treat more com-

plicated structures which provide a better approximation to air-

craft configurations. Our ultimate goal will be to see how the

calculations are affected when coping with actual aircraft test

data.
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